首页> 外文OA文献 >Immersed Boundary Models for Quantifying Flow-Induced Mechanical Stimuli on Stem Cells Seeded on 3D Scaffolds in Perfusion Bioreactors.
【2h】

Immersed Boundary Models for Quantifying Flow-Induced Mechanical Stimuli on Stem Cells Seeded on 3D Scaffolds in Perfusion Bioreactors.

机译:浸入式边界模型,用于对灌注生物反应器中3D支架上接种的干细胞上的流诱导的机械刺激进行量化。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Perfusion bioreactors regulate flow conditions in order to provide cells with oxygen, nutrients and flow-associated mechanical stimuli. Locally, these flow conditions can vary depending on the scaffold geometry, cellular confluency and amount of extra cellular matrix deposition. In this study, a novel application of the immersed boundary method was introduced in order to represent a detailed deformable cell attached to a 3D scaffold inside a perfusion bioreactor and exposed to microscopic flow. The immersed boundary model permits the prediction of mechanical effects of the local flow conditions on the cell. Incorporating stiffness values measured with atomic force microscopy and micro-flow boundary conditions obtained from computational fluid dynamics simulations on the entire scaffold, we compared cell deformation, cortical tension, normal and shear pressure between different cell shapes and locations. We observed a large effect of the precise cell location on the local shear stress and we predicted flow-induced cortical tensions in the order of 5 pN/mum, at the lower end of the range reported in literature. The proposed method provides an interesting tool to study perfusion bioreactors processes down to the level of the individual cell's micro-environment, which can further aid in the achievement of robust bioprocess control for regenerative medicine applications.
机译:灌注生物反应器调节流动条件,以便为细胞提供氧气,营养和与流动相关的机械刺激。在局部,这些流动条件可以根据支架的几何形状,细胞汇合度和额外的细胞基质沉积量而变化。在这项研究中,引入了浸入边界方法的新应用,以代表附着在灌注生物反应器内部的3D支架上并暴露于微观流动的详细的可变形细胞。浸入式边界模型可以预测局部流动条件对电池的机械影响。结合原子力显微镜测量的刚度值和从整个支架上的计算流体动力学模拟获得的微流边界条件,我们比较了不同细胞形状和位置之间的细胞变形,皮质张力,法向压力和剪切压力。我们观察到了精确的细胞位置对局部剪切应力的巨大影响,并且我们预测了由流量引起的皮质张力约为5 pN /μm,处于文献报道范围的下限。所提出的方法提供了一个有趣的工具,用于研究直至单个细胞微环境水平的灌注生物反应器过程,这可以进一步帮助实现用于再生医学应用的可靠的生物过程控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号